
Terceira Prova de Teoria Eletromagnética I, $01/12/2010$	Terceira F	Prova de	Teoria	Eletromagné	tica I,	01/3	12	/2010
--	------------	----------	--------	-------------	---------	------	----	-------

Nome:			

(1^a questão) (3,0 pontos)

Determine o vetor campo magnético no ponto P gerado pela configuração de corrente estacionária I dada pelo circuito composto da junção dos dois quartos de círculos de raios a e b mostrados abaixo. Escolha explicitamente um referencial na figura e justifique passo a passo a sua solução.

(2^a questão) (4,0 pontos)

Um cilindro longo, de raio R e composto de material linear de permeabilidade μ , é colocado em um campo magnético inicialmente uniforme \overrightarrow{B}_0 , de modo que o eixo do cilindro seja perpendicular a \overrightarrow{B}_0 . Assuma que não existem correntes livres no cilindro e que a região externa ao cilindro possui a permeabilidade magnética μ_0 do espaço livre.

- (a) $(1,0 \ ponto)$ Mostre que o campo auxiliar \overrightarrow{H} pode ser escrito como o gradiente de uma função W e que o problema de determinar \overrightarrow{H} se reduz à solução de uma equação de Laplace.
- (b) $(2,0 \ pontos)$ Determine as condições de contorno a serem obedecidas por W e por sua derivada normal $\partial W/\partial n$ na superfície do cilindro.
- (c) $(1,0\ ponto)$ A partir da solução da equação de Laplace, encontre o campo magnético \overrightarrow{B} resultante dentro do cilindro.

Dado útil: A solução geral da equação de Laplace, assumindo-se simetria cilíndrica, é

$$W(s,\phi) = a_0 + b_0 \ln s + \sum_{k=1}^{\infty} \left[s^k \left(a_k \cos k\phi + b_k \sin k\phi \right) + s^{-k} \left(c_k \cos k\phi + d_k \sin k\phi \right) \right].$$

(3^a questão) (3,0 pontos)

Sobre o comportamento magnético de sistemas físicos, resolva as questões abaixo.

- (a) (1,0 ponto) Explique qualitativamente a origem microscópica do paramagnetismo e do diamagnetismo, ressaltando as diferenças entre esses dois comportamentos magnéticos.
- (b) $(2,0 \ pontos)$ Considere um solenóide infinito (com n espiras por unidade comprimento e corrente I) preenchido com material diamagnético linear de susceptibilidade χ_m . Determine o campo magnético no interior do solenóide e discuta se o campo é aumentado ou diminuído em relação ao caso do solenóide não magnetizado (não preenchido por material magnético).